
Project: Code Snippets

Table of Contents
The Page ...2

Connecting to the Database...3

Adding a Record...4

Populating the List ...6

Displaying an Existing Snippet ...8

Displaying the Content on the Form ...10

The Submit Buttons ..11

Updating Records ...12

Deleting Records ..14

Finishing Off ..15

Data Validation ..15

Highlighting the Current Record ..16

Auto Submit ..16

In the following exercise, you will develop a database for your code snippets. Apart from the practice, you

may find this database a useful resource for your development.

To begin with, you will need to create a new database called “snippets” and a new table, also called

“snippets”.

You can use the following structure for your table1:

CREATE TABLE snippets (

id INT NOT NULL AUTO_INCREMENT,

collection INT NULL DEFAULT NULL,

owner INT NULL DEFAULT NULL,

title VARCHAR(48) NOT NULL,

content TEXT NULL DEFAULT NULL,

entered DATETIME NULL,

modified DATETIME NULL,

PRIMARY KEY (id)

) ENGINE = InnoDB;

The fields are as follows:

id The autoincremented primary key

title A descriptive title

content The text of the snippet

entered The date the snippet was created

modified The date the snippet was last update

The two fields, collection and owner will not be used at this stage, but will allow a future refinement

involving multiple collections and contributors.

1This SQL statement is for MYSQL. For testing purposes, a file called snippets.sqlite is included, which allows

you use the built-in SQLite database.

Project: Code Snippets The Page

The Page

The index.php page contains mainly a single form with multiple submit buttons.

<form action="" method="post">

<div id="titles">

<select name="snippets" size="16">

<option value="0">New Snippet</option>

<!-- Snippet Titles -->

</select>

<button type="submit" name="select">Select Snippet< /button>

</div>

<div id="editnote">

<p><input type="text" name="id" value="<?php print $id; ?>" /></p>

<p><label for="addtitle">Title:</label>

<input type="text" name="title" id="title" class="t ext" value="..." /> </p>

<p><label for="content">Content:</label>

<textarea name="content" id="content" cols="20" row s="12">...</textarea> </p>

<div id="control">

<!-- if new -->

<p><button type="submit" name="insert">Add</button> </p>

<!-- else -->

<p><button type="submit" name="update">Update</button>

<button name="delete">Delete</button> </p>

<!-- end if -->

</div>

</div>

</form>

The select element will contain a list of existing snippet titles to select one to be edited or deleted. Its first

element (New Snippet) will be used to insert a new snippet.

The text box and text area will contain the data from an existing snippet for editing or reviewing.

The control area will contain either an insert button, if a new one is selected, or update and delete buttons

if an existing one is selected.

Copyright © 2010 Mark Simon 2

Project: Code Snippets Connecting to the Database

Connecting to the Database

Create a file called db.php , and save it into your includes folder.

The connection script is a standard connection using PDO. We will use the variable $pdo in future scripts.

Enter the following2:

<?php

$database='snippets';

$user='snippets'; // or whatever

$password='password'; // or whatever

//$dsn="sqlite:includes/$database.sqlite";

$dsn="mysql:host=localhost;dbname=$database";

try {

//$pdo = new PDO($dsn);

$pdo = new PDO($dsn,$user,$password);

} catch(PDOException $e) {

die ("Cannot connect to database $database");

}

?>

At the top of your index.php file, include the following:

<?php

require_once('includes/db.php');

?>

2This code is for a connection to MYSQL. If you are using the sample snippets.sqlite database, you can use the

commented code instead (the $dsn and $pdo assignment statements). Don’t forget to comment out the MYSQL

versions.

Copyright © 2010 Mark Simon 3

Project: Code Snippets Adding a Record

Adding a Record

The form contains a button named “insert”. Currently the update and delete buttons are also visible, but

later we will choose between them.

To test whether the form has been submitted via the insert button, test for its existence in the $_POST

array.

<?php

require_once('includes/db.php');

if(isset($_POST['insert'])) {

}

?>

We don’t care what its actual value is, just whether it has been set.

First, we will read in the text fields. Just in case, we will also trim them, removing spaces at the beginning

or end:

if(isset($_POST['insert'])) {

$title=trim($_POST['title']);

$content=trim($_POST['content']);

}

(At this point, we should check whether they have been filled, but we will deal with that later).

Because the data comes from the user, it should be treated with care. All outside data should be regarded as

a potential SQL injection attack, but is easily managed using prepared statements.

The SQL for inserting the data is:

$sql='INSERT INTO snippets(title,content) VALUES(?, ?);';

The question mark place holders will be replaced with data after the statement has been prepared,

preventing the data from being misinterpreted as additional SQL.

We will now prepare the statement:

$pdoStatement=$pdo->prepare($sql);

Although you can bind the data separately to the statement at this point, it is much simpler to bind the data

when you execute the prepared statement. This is done by passing an array of values:

$pdoStatement->execute(array($title,$content));

Remember that the data must be in an array (even if there is only one value), every question mark must

have a corresponding value, and that the values must be in the correct order.

Copyright © 2010 Mark Simon 4

Project: Code Snippets Adding a Record

This will give us:

if(isset($_POST['insert'])) {

$title=trim($_POST['title']);

$content=trim($_POST['content']);

$sql='INSERT INTO snippets(title,content) VALUES(?, ?);';

$pdoStatement=$pdo->prepare($sql);

$pdoStatement->execute(array($title,$content));

}

For convenience, we will want a copy of the id of the new record. The id will be used for display later.

However, since the id is and auto incremented value, we will need to get the value from the database. This

is given by the lastInsertId() method of PDO:

$id=$pdo->lastInsertId();

The finished code reads:

if(isset($_POST['insert'])) {

$title=trim($_POST['title']);

$content=trim($_POST['content']);

$sql='INSERT INTO snippets(title,content) VALUES(?, ?);';

$pdoStatement=$pdo->prepare($sql);

$pdoStatement->execute(array($title,$content));

$id=$pdo->lastInsertId();

}

Copyright © 2010 Mark Simon 5

Project: Code Snippets Populating the List

Populating the List

Now that we have something in the table, we will want to see it.

We will create a variable called $snippets . This will contain the option elements to go into the select

element in the form.

An option element has this form:

<option value="...">...</option>

The text content of the element is what the user sees. The value of the element is what will be posted. In

our case, the text will be the title of the snippet, while the value will be the id.

To begin with, this array will be an empty array.

Towards the end of the PHP block (after the processing of the form data), add the following:

<?php

…

$snippets=array();

?>

Now, we will read the table for a list of ids and titles.

$sql='SELECT id,title FROM snippets';

Since we are not working with user data, we can query the database without having to prepare a statement

first:

$pdo->query($sql)

This will give us a result set (which is technically a PDOStatement), which we can assign to a variable:

$results=$pdo->query($sql);

The results can then be iterated like an array:

foreach($results as $row) {

}

More simply, you do not have to use an intervening variable, and you can iterate through the query result

set directly:

foreach($pdo->query($sql) as $row) {

}

Each $row variable will be an array with the data. Although the array also contains numbered elements

with the same data, we will be using the associative elements:

foreach($pdo->query($sql) as $row) {

$snippets[]="<option value=\"$row[id]\" $selected>$ row[title]</option>";

}

Since the associative elements are placed inside the string, you do not quote the keys, even though they are

text keys!

Copyright © 2010 Mark Simon 6

Project: Code Snippets Populating the List

The $snippets[]= notation means that a new value will be added to the end of the array. This is also

known as pushing a value onto the array.

When the array is complete, we will convert into a string, since it is this string which must be printed into

the HTML.

The implode() function (also known as join()) takes two parameters: the glue (what comes between the

values), and the array.

$snippets=implode('',$array);

In this case, we want nothing between the values (in HTML the only thing permissible between option

elements is space).

Note that by re-using the $snippets variable, we have replace an array with a string. However, we are still

using the variable for the same purpose.

The completed code should look like this:

$snippets=array();

$sql='SELECT id,title FROM snippets';

foreach($pdo->query($sql) as $row) {

$selected= $id==$row['id'] ? ' selected="selected"' : '';

$snippets[]="<option value=\"$row[id]\" $selected>$ row[title]</option>";

}

$snippets=implode('',$snippets);

Copyright © 2010 Mark Simon 7

Project: Code Snippets Displaying an Existing Snippet

Displaying an Existing Snippet

Although part of the same form as the rest, the select element has a button closely associated with it.

Later we will include some JavaScript which will replace this button with an action. This is not required,

especially if JavaScript has been turned off, so the JavaScript will only be applied if available.

We will put the code before the other input handling code, so we can use the results in later code if we

need.

The select element is named “snippets”. To check whether one has been selected, we will check the post

array. If one has been selected, we will set the id:

<?php

require_once(...);

if(isset($_POST['snippets'])) {

$id=...;

}

…

?>

Remember that the first option, New Snippet, has a value of 0. Since the snippet ids start at 1, this will

(later) be use to indicate that we want a new record.

As a zero, 0, may also have been selected, we really want to test whether the value is non-zero, rather than

whether it has been set:

if($_POST['snippets']) ...

However, if no value has been selected at all, the above would generate an error, so we add the error

suppression operator (@):

if(@$_POST['snippets']) {

$id=...;

}

The error suppression operator ignores the potential error, and can be used in cases where “no value” is an

acceptable alternative.

The above could be interpreted as “if snippets, where it exists, is non-zero, then ...”.

If none has been selected, then we will set the $id to 0:

if(@$_POST['snippets']) {

}

else $id=0;

Although the data should have come from a form, and we have constructed this data ourselves, it is still

best convert the value to an integer:

if(@$_POST['snippets']) {

$id=intval($_POST['snippets']);

}

Copyright © 2010 Mark Simon 8

Project: Code Snippets Displaying an Existing Snippet

The intval() function will convert as much as possible to an integer, stopping at the first invalid

character. If there is no valid character, the result will be 0.

The SQL statement will select the title and content from the snippets table matching the id. For good

measure, we will also count the results.

Since the id is unique, you will never get more than one row, and a corresponding count of 0. An invalid id

would result in an empty row. However, if you include a count, you will get one row again, with a count of

0, and NULL for the remaining fields. This will simplify testing.

if(isset($_POST['snippets'])) {

$id=intval($_POST['snippets']);

$sql="SELECT count(*), title, content FROM snippets WHERE id=$id;";

}

It is perfectly safe to include the user data into this SQL statement, since the intval() function has

converted into an integer, making it incapable of being interpreted as additional SQL.

Since the SQL is safe, we can run the query directly:

$pdo->query($sql)

Since there will only be exactly one row, we can fetch it immediately:

$pdo->query($sql)->fetch();

The result, as usual, will be an array of values. This time, it is more convenient to use the numbered keys,

since we can use them in a list():

list($count,$title,$content)=$pdo->query($sql)->fet ch();

The list() operator (this is not technically a function, though it looks like one) will copy the numbered

elements of an array into the listed variables. It is a convenient way of working with multiple variables.

In the event of an invalid id, we will have a $count of 0, and NULL for the $title and $content , which

we will deal with presently.

If the count is 0, we will set the id to 0, which will also indicate a new entry:

if(!$count) $id=0;

This will give us:

if(isset($_POST['snippets'])) {

$id=intval($_POST['snippets']);

$sql="SELECT count(*), title, content FROM snippets WHERE id=$id;";

list($count,$title,$content)=$pdo->query($sql)->fet ch();

if(!$count) $id=0;

}

If a valid snippet has not been selected, and hence the id is 0, we will set the title and content to empty

strings:

else $id=0;

if(!$id) $title=$content='';

Note that is possible to assign the empty string to both variables in one statement.

Copyright © 2010 Mark Simon 9

Project: Code Snippets

Copyright © 2010 Mark Simon 10

Project: Code Snippets Displaying the Content on the Form

Displaying the Content on the Form

Having read the title and content, or set them to empty strings, we will display them on the form.

For a text box, and input element, you display the old or default value in the value attribute:

<input type="text" name="..." value="..." />

In this case we will insert a PHP print statement of the variable. To be safe we will also include the error

suppression operator, in case the value was not set:

<input type="text" name="title" value="<?php print @$title; ?>" />

For a text area, the old or default value is between the opoening and closing tags:

<textarea name="...">...</textarea>

In this case we will use:

<textarea name="content"><?php print @$content; ?>< /textarea>

Finally, though this will not be displayed, we will need to store the id. This will be used when later we

update or delete the record, and so the record will need to be identified.

To store a value in a form without user intervention, we use a hidden field. This field is not displayed on the

page (though it is still visible in the page source).

<input type="hidden" name="..." value="..." />

Generally you would hard code the value, since the user is unable to enter the value otherwise. A JavaScript

might also be used to set the value.

In our case, we will set the hidden field for the id:

<input type="hidden" name="id" value="<?php print @ $id; ?>" />

Copyright © 2010 Mark Simon 11

Project: Code Snippets The Submit Buttons

The Submit Buttons

Although a form may have many submit buttons, you should still hide the buttons which are not relevant,

or which might interfere with you application.

In this case, we will display an insert button if the record is a new record, or the update and delete buttons

if the record is an existing record.

The simplest way to distinguish between a new record and an existing record is with the id. A value of 0

will indicate a new record, while a non-0 id will indicate an existing record.

We have a div (control) which contains the various buttons.

PHP allows you to intersperse PHP blocks with ordinary HTML (or other text). Remember, that what is

not inside a PHP block is regarded as PHP output.

A useful structure is:

<?php if(...) { ?>

<!-- PlanA -->

<?php } else { ?>

<!-- PlanB -->

<?php } ?>

If the condition is true, then the PlanA text will be output. Otherwise the PlanB text will be output.

For this project, we will test whether the id is 0 (new record). If so, we will display the insert button.

Otherwise we will display the update and delete buttons.

Enter the following:

<?php if(...) { ?>

<!-- PlanA -->

<?php } else { ?>

<!-- PlanB -->

<?php } ?>

Replace the condition with:

<?php if(!$id) { ?>

This will be true if $id is not something, that is, it is zero.

Replace PlanA with the insert button, and PlanB with the update and delete buttons.

The code should read:

<div id="control">

<?php if(!$id) { ?>

<p><button type="submit" name="insert">Add</button> </p>

<?php } else { ?>

<p><button type="submit" name="update">Update</butt on>

<button name="delete">Delete</button></p>

<?php } ?>

</div>

Copyright © 2010 Mark Simon 12

Project: Code Snippets Updating Records

Updating Records

Now that we can add and display records, we will look at changing them.

The key to updating is to have an id to identify the record being updated. This id comes from the selected

snippet earlier, copied into the hidden id field.

To check whether a record is being updated, we check its submit button. This is logically placed after the

test for insert, thought it doesn't have to be:

if(isset($_POST['insert'])) {

...

}

elseif(isset($_POST['update'])) {

}

Note that as you can only press one submit button, you do not need the elseif clause - you could simply

have used another if . The elseif is only required when both conditions might be true, but you only want

one to be executed. However, the use of elseif here helps to group the tests together.

Just as with the insert script, we will read in the title and content from the POST array. In addition, we will

also read in the id, which comes from the hidden field previously set. This value will be processed through

intval() :

elseif(isset($_POST['update'])) {

$id=intval($_POST['id']);

$title=trim($_POST['title']);

$content=trim($_POST['content']);

}

As before, we should really check whether the title and content have been supplied.

To update a record, we use the SQL UPDATE command.

UPDATE ... SET ...=..., ...=...;

The UPDATE command is potentially disastrous to a database, since it will change all of the records

unless you qualify it with a WHERE clause.

UPDATE ... SET ...=..., ...=... WHERE ...=...;

In this case we will set new values for the title and the content, and use the WHERE clause to select for the

record's id:

UPDATE snippets SET title=...,content=... WHERE id= ...;

Since we will be adding user data, we will need to prepare the statement first, and execute it with data later.

The values will be set with question mark place holders:

elseif(isset($_POST['update'])) {

…

$sql='UPDATE snippets SET title=?,content=? WHERE i d=?;';

$pdoStatement=$pdo->prepare($sql);

}

Copyright © 2010 Mark Simon 13

Project: Code Snippets Updating Records

Copyright © 2010 Mark Simon 14

Project: Code Snippets Updating Records

Finally, we execute the command with data:

elseif(isset($_POST['update'])) {

…

$pdoStatement->execute(array($title,$content,$id));

}

The finished script should look like this:

elseif(isset($_POST['update'])) {

$id=intval($_POST['id']);

$title=trim($_POST['title']);

$content=trim($_POST['content']);

$sql='UPDATE snippets SET title=?,content=? WHERE i d=?;';

$pdoStatement=$pdo->prepare($sql) or die('oops');

$pdoStatement->execute(array($title,$content,$id));

}

Copyright © 2010 Mark Simon 15

Project: Code Snippets Deleting Records

Deleting Records

Now we can delete records using the SQL DELETE command. Although this command is also potentially

disastrous for the same reasons, some would argue that it is better to lose your data than to have bad data.

We will add another elseif block underneath the others. As before, the elseif is not strictly necessary,

since we can only press one submit button.

elseif(isset($_POST['delete'])) {

}

Again, as before, we will extract the id of the record:

elseif(isset($_POST['delete'])) {

$id=intval($_POST['id']);

}

To delete a record, we use the SQL DELETE command:

DELETE FROM ... DELETE FROM ... WHERE ...

The first form will delete all records. The second will delete only selected records.

Since the id has been processed through intval() , it cannot contain any harmful SQL. This means it is

safe to include it directly into the SQL string, and to execute it directly:

$sql="DELETE FROM snippets WHERE id=$id;";

$pdo->exec($sql);

Note that unlike SELECT statements, use the exec() method of PDO, not the query() method.

Finally, we reset the id, title and content:

$id=0; $title=$content='';

The final code should look like this:

elseif(isset($_POST['delete'])) {

$id=intval($_POST['id']);

$sql="DELETE FROM snippets WHERE id=$id;";

$pdo->exec($sql);

$id=0;

$title=$content='';

}

Copyright © 2010 Mark Simon 16

Project: Code Snippets Finishing Off

Finishing Off

The project will now work and can be used for storing your code snippets or other useful notes. Hwever

there are a few futures which might make your project more useful.

Data Validation

When we submit or update a snippet, you will need to check whether you have a title, and depending on

your policy, content (you may wish to allow empty content if you plan on filling it later).

To begin with, we will have a variable called $error, and set it to an empty string. This variable is best set

just before the code which checks the insert and update operations:

$error='';

if(isset($_POST['insert'])) {

}

elseif(isset($_POST['update'])) {

}

After the title and content variables have been set in the insert code, you will need to test whether they

both have a non-empty value. The if structure should embrace the remaining code:

if(isset($_POST['insert'])) {

$title=trim($_POST['title']);

$content=trim($_POST['content']);

if($title && $content) {

$sql='INSERT INTO snippets(title,content) VALUES(?, ?);';

$pdoStatement=$pdo->prepare($sql) or die('oops');

$pdoStatement->execute(array($title,$content));

$id=$pdo->lastInsertId();

}

}

Note that a convenient shorthand to test whether a variable has an empty value is simply to test the

variable itself. A non-empty string evaluates as true , while an empty string evaluates as false .

Note also the use of the and operator (&&).

If either the title or content are empty, the else clause will assign an error message:

if($title && $content) {

} else $error='<p class="error">Please complete the T itle & Contents</p>';

The same needs to be done for the update code.

Finally, the error message needs to be displayed. In the form, just below the paragraph with the hidden

form element, add the following PHP block:

<p><input type="hidden" name="id" value="<?php prin t $id; ?>" /></p>

<?php print $error; ?>

Since the $error variable will have been set to an empty string or to an error paragraph, the print

statement will safely print the results.

Copyright © 2010 Mark Simon 17

Project: Code Snippets Finishing Off

Highlighting the Current Record

When you select a snippet title and submit it, the newly refreshed page will not highlight the selected title

in the list.

To highlight a selected option in HTML, you can use the selected attribute:

<option value="..." selected="selected">...</option >

When we generate the list of options, we will insert the selected attribute when (or if) the id of the current

item matches the id selected with the previous submit. One simple way of inserting an occasional attribute

is to define a variable, and set it using the conditional (ternary) operator:

$selected = test ? planA : planB;

The conditional operator uses either the first or the second value, depending on whether the test evaluates

as true.

The id selected will be in the variable $i , which will be 0 if no item has been selected. We will compare

this against the current row’s id:

$id==$row['id']

If true, we will use the string ' selected="selected"' ; otherwise we will use the empty string '' . Note

the space at the beginning of the first string. This makes it easier to insert into the HTML which requires

a space between attributes.

$selected = $id==$row['id'] ? ' selected="selected" ' : '';

It remains only to insert this string into the code for the option:

$snippets[]="<option value=\"$row[id]\" $selected >$row[title]</option>";

The resulting code should look like this:

foreach($pdo->query($sql) as $row) {

$selected= $id==$row['id'] ? ' selected="selected"' : '';

$snippets[]="<option value=\"$row[id]\" $selected >$row[title]</option>";

}

Auto Submit

Currently, the snippets list comes with a submit button. Using JavaScript, you can have the snippets list

auto-submit. The following JavaScript will enable auto-submit, as well as hide the submit button:

<script type="text/javascript">

window.onload=function() {

document.forms[0].select.style.visibility='hidden';

document.forms[0].snippets.onchange=function() {doc ument.forms[0].submit(); };

}

</script>

Copyright © 2010 Mark Simon 18

