
PHP
Additional Notes

Notes developed by Mark Simon
Version: 0.1

Comparity Net
resources.comparity.net

Copyright © 2012

All rights reserved.

This document must not be distributed without this notice.

About these Notes

These notes are supplementary to PHP training delivered by Mark Simon. They are also available in

PDF form from resources.comparity.net. Permission is granted for students of Mark Simon to use

and reprint these notes. However permission is not granted to distribute these notes to others, nor to
make copies for any purposes other private study.

A more complete set of instructions and notes is available as part of the training material supplied by
101 Courseware. Information is available from www.101courseware.com.

http://www.101courseware.com/
http://www.101courseware.com/

Contents

Appendix A: Setting Up 3
Installing WAMP 4
Installing & Setting Up Komodo Edit 7
Useful Firefox Add-ons 9

Appendix B: Virtual Domains 11
How to fake a Local Domain 12
Setting the hosts File 12
Setting up Apache 13

Appendix C: Using PHPMyAdmin 15
PHPMyAdmin 17
Using PHPMyAdmin 18
Using the GUI 18

Appendix D: Configuring PHP 23
How to Configure PHP 24
Setting PHP options 25
Some Useful Configuration Options 25
Sample Configuration Settings 28

Appendix E: PDO 31
PDO Objects 33
Working With PDO 34
Prepared Statements and SQL Injection 36
Unprepared (Direct) SQL Statements 38
PDO Techniques 40
Simple PDO Recipes 43
Summary of PDO 44
Summary of Process 47

Appendix F: Code Snippets 49
The Snippets Table 50
The Page 51
Connecting to the Database 52
Adding a Record 52
Populating the List 54
Displaying an Existing Snippet 56
Displaying the Content on the Form 58
The Submit Buttons 59
Updating Records 60
Deleting Records 61
Finishing Off 62

Contents i

A
Appendix A: Setting Up

PHP: Additional Notes Copyright © 2012: Comparity Net

Appendix A: Setting Up PHP: Additional Notes

Installing WAMP
The easiest way to install a Web Server on Windows is to use the Wamp Server. It is a
Free and Open Source packaging of Apache, PHP and MySQL.

You can download the latest version of Wamp here:

http://www.wampserver.com/en/

Starting Up
Start the installer and accept the License Agreement:

Location
Choose the location of the Package. The default location is OK; you should make sure
that your package is installed in a path without spaces.

4 Installing WAMP

http://www.wampserver.com/en/

Copyright © 2012: Comparity Net Appendix A: Setting Up

Shortcuts
Choose whether you want Quick Launch or Desktop Shortcut icons.

Installing
The package will now install.

SMTP & Mail
If you know the IP address of a mail server, enter it now. This can be changed later.

Installing WAMP 5

Appendix A: Setting Up PHP: Additional Notes

Finish
You can now launch the Wamp Server.

Wamp does not install itself as a startup program. If you want to do this, you will need
to copy a shortcut to your startup folder.

6 Installing WAMP

Copyright © 2012: Comparity Net Appendix A: Setting Up

Installing & Setting Up Komodo Edit
To develop PHP, you can use any text editor of your choice. There are many text editors
which are suited to developing code.

Komodo Edit is a Free and Open Source programming editor which has many
additional features to text editing. Among other things, it is aware of the Web
languages you will use, and help in checking simple typing errors.

Komodo Edit is available from:

http://www.activestate.com/komodo-edit

There is also Komodo IDE, a paid product which is a more complete development
environment. Among other things, it will help you to debug running code.

Komodo Edit is very customisable. It also has the ability to store code snippets and run
macros.

The Extras folder includes a folder of Snippets and Macros which you can use.

Installing & Setting Up Komodo Edit 7

http://www.activestate.com/komodo-edit

Appendix A: Setting Up PHP: Additional Notes

Suggested settings for Komodo Edit
Turn On

Turn Off

Choose for yourself

Category Group Settings

Appearance (General) Number of Projects

Number of Files

Editor (General) Show White Space characters

Show end-of-line characters

Show line numbers
Indentation Prefer Tab characters over spaces

Number of spaces per indent

Width of each Tab character

Per Language Indentation Settings:
(Set for HTML, PHP, JavaScript, SQL, CSS)

Save Options Clean trailing white space and EOL markers

Ensure file ends with EOL marker

Auto-save every seconds

Fonts and Colors Fonts Encoding

Common Syntax Choose a colour for your comments, and turn off italics.

Internationalization Default Editor
Encoding

Use Encoding Defined in Environment: …

Custom Encoding

Custom

Encoding

Language-Specific Default Encoding

(Set for HTML, PHP, JavaScript, SQL, CSS)

Signature (BOM)

New Files New Files Specify the default language for files created using the 'New'
Button.

(Set HTML, PHP or whatever; even Text will do);

Specify the end-of-line (EOL) indicator for newly created
files.

Assign new, empty files this EOL

Web & Browser Which browser should Komodo use when opening URLs?

(System Default, or Firefox if not set to default)

Which method should be used to preview files in browser?

Preview in Komodo Tab, same tab group

Preview in external browser

Mapped URIs Mapped URIs URI http:// ...

Maps to file:// ...

8 Installing & Setting Up Komodo Edit

?

?

4

4

0

UTF-8

UTF-8

DOS/Windows (\r\n)

Copyright © 2012: Comparity Net Appendix A: Setting Up

Useful Firefox Add-ons
Apart from the benefits of having a modern Web Browser which supports current
standards, Firefox also supports a vast number of extensions or add-ons.

Below are some add-ons which may help you in your web development work:

Page Info Button

https://addons.mozilla.org/en-US/firefox/addon/
page-info-button/

The Page Info button simply makes a button available for the Page Info, but

it also includes a shortcut key, Ctrl-I.

View Cookies

https://addons.mozilla.org/en-US/firefox/addon/
view-cookies/

Althougth all Cookies are already visible in Firefox, the View Cookies add-
on makes Cookies for the current page visible and editiable in the Page Info.

Firebug

https://addons.mozilla.org/en-US/firefox/addon/firebug/

Firebug is a set of tools to help you follow and trouble shoot HTML, CSS and
JavaScript on individual pages.

Html Validator

https://addons.mozilla.org/en-US/firefox/

addon/html-validator/

The HTML Validator checks pages as they are loaded for HTML errors, and
displays an icon to indicate the results. When you view the page source,
HTML Validator gives more detail on HTML errors.

ColorZilla

https://addons.mozilla.org/en-US/firefox/addon/colorzilla/

CollorZilla is an eye-dropper and colour picker for Firefox. It allows you to
select any colour on the page and copy its values for inclusion in CSS.

Useful Firefox Add-ons 9

https://addons.mozilla.org/en-US/firefox/addon/colorzilla/
https://addons.mozilla.org/en-US/firefox/addon/html-validator/
https://addons.mozilla.org/en-US/firefox/addon/html-validator/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/view-cookies/
https://addons.mozilla.org/en-US/firefox/addon/view-cookies/
https://addons.mozilla.org/en-US/firefox/addon/page-info-button/
https://addons.mozilla.org/en-US/firefox/addon/page-info-button/

Appendix A: Setting Up PHP: Additional Notes

Pearl Crescent Page Saver

http://pearlcrescent.com/products/pagesaver/

The Pearl Crescent Page Saver allows you to take an image, not only of the
visible portion of a page, but the whole of the page, including off-screen
parts.

Web Developer

https://addons.mozilla.org/en-US/firefox/addon/
web-developer/

Web Developer is a set of tools for

10 Useful Firefox Add-ons

https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
http://pearlcrescent.com/products/pagesaver/

B
Appendix B: Virtual

Domains

PHP: Additional Notes Copyright © 2012: Comparity Net

Appendix B: Virtual Domains PHP: Additional Notes

How to fake a Local Domain
The following instructions will show you how to emulate a domain on your local
testing or development server, in particular, using WAMP. This uses Apache’s ability to
work with Virtual Hosts.

For our purposes, we will use the domain example.com, but you can use a real one if

you like. Just note that if you do use a real one, the following will take precedence, and
you will not be able to access the real domain.

Setting the hosts File
The first thing is to tell Windows that your domain is really just the localhost in
disguise. For this we use the hosts file.

In most current versions of Windows, you will find the hosts file in the following
location:

C:\WINDOWS\system32\drivers\etc\hosts

This is a text file with a lot of comments (# ...), and one or two entries. The entries

take this form:

[ip address] [domain name]

You will already see the entry

127.0.0.1 localhost

which tells you that the name localhost is really just a name for 127.0.0.1, which

is the standard IP address of the current machine. We say that localhost resolves to

127.0.0.1

We need to add the following to resolve the example.com address to the local

machine:

127.0.0.1 localhost
127.0.0.1 example.com
127.0.0.1 www.example.com

Now you can save the file.

12 Setting the hosts File

Copyright © 2012: Comparity Net Appendix B: Virtual Domains

Setting up Apache
The next step will be to tell Apache how to react if you access this domain.

httpd.conf
The main configuration file is called httpd.conf. Its actual location will vary from

version to version, but it is something like this:

C:\wamp\bin\apache\Apache2.2.17\conf\httpd.conf

The current version of Wamp may include a different version of Apache, so you will
need to make adjustments here.

About 400 lines down, find the following lines:

Virtual hosts
#Include conf/extra/httpd-vhosts.conf

The lines are commented out (#...), which means that no virtual hosts are enabled.

Add the following (uncommented) line below it:

Virtual hosts
#Include conf/extra/httpd-vhosts.conf
Include conf/extra/example.conf

This means that we will put our virtual host settings in a separate file called

example.conf.

example.conf
Now create a new file, and save it as example.conf inside the extra folder, inside the

conf folder.

Setting up Apache 13

Appendix B: Virtual Domains PHP: Additional Notes

Put the following in the example.conf file:

<VirtualHost *:80>
ServerAdmin webmaster@localhost
DocumentRoot "c:/wamp/www"
ServerName localhost
ErrorLog "logs/localhost-error.log"
CustomLog "logs/localhost-access.log" common

</VirtualHost>
<VirtualHost *:80>

DocumentRoot "c:/wamp/www/australia"
ServerName www.example.com
<directory "c:/wamp/www/australia">

Options Indexes FollowSymLinks
AllowOverride all
Order Deny,Allow
Deny from all
Allow from 127.0.0.1

</directory>
</VirtualHost>

Without going into too much detail, this tells us that accessing localhost will work

as before, but accessing www.example.com (which also resolves to 127.0.0.1) will

take you directly to your nominated folder (in this case, australia).

Now, save the file, and restart your server. You should now be able to access

www.example.com directly.

14 Setting up Apache

C
Appendix C: Using

PHPMyAdmin

PHP: Additional Notes Copyright © 2012: Comparity Net

Appendix C: Using PHPMyAdmin PHP: Additional Notes

Contents

PHPMyAdmin 17

Using PHPMyAdmin 18

Using the GUI 18

Creating A Database 18
Creating a User 19
Creating a Table 19
Adding a Record 21

The most popular freely available programs include:

• The MySQL Command Line Interface (CLI). If you are happy typing in all of

your commands, then this is a very simple tool. The CLI on Linux is much more
sophisticated than that on Windows.

• The MySQL Workbench. This is a replacement for the older MySQL GUI tools,

and is produced by MySQL. While the Workbench is much more sophisticated
than the older GUI tools, it is harder to use, and many find it overwhelming.

• PHPMyAdmin. This is a MySQL management tool written entirely in PHP, to

be used in a Browser. Being a Web based tool, some aspects are slow and
awkward, but it makes managing a database over the Internet practical.

16 Appendix C: Using PHPMyAdmin

Copyright © 2012: Comparity Net Appendix C: Using PHPMyAdmin

PHPMyAdmin
Although our main database work will be in PHP itself, we will use PHPMyAdmin to
perform a number of important tasks.

Creating a Database & Users

The simplest way to create a new database is via PHPMyAdmin. Since it is
not a task we will perform very often, we can happily rely on this tool.

For the administration of our database, we can use PHPMyAdmin to create
database users. This allows us to control access to tables and databases, and
to set passwords.

Creating & Browsing Tables

PHPMyAdmin has a table creation tool which allows us to define the
columns with a few simple choices. The result is a CREATE TABLE
command which we could also by hand issue if we prefer.

To check the contents of our tables, we can use PHPMyAdmin to browse the
tables, and, to some extent, manage the data.

Backup and Restore

PHPMyAdmin can export the data into am SQL file, and re-import the data
to create a new copy of the database. This will be useful when transferring
the data to another server, or when keeping a copy of the data for backup
purposes. Note that PHP may run into the 2Mb upload limit if there is too
much data.

PHPMyAdmin 17

Appendix C: Using PHPMyAdmin PHP: Additional Notes

Using PHPMyAdmin
Generally, there are two ways to use PHPMyAdmin.

• The GUI offers a point-and-click approach to performing certain tasks. For

some tasks, this is the simplest, as a deep knowledge of SQL is not required,
though you will need to know enough to make the right choices. For some
tasks, this can be tedious.

• The SQL Window allows you to dispense with the GUI and enter SQL

commands to be executed. This is especially useful if you already have the SQL
statements prepared, or if the GUI tool cannot handle it easily.

Using the GUI
Creating A Database

1. Select the Databases Tab in the main window:

2. In the next window, enter a new database name, and click on Create:

18 Using the GUI

Copyright © 2012: Comparity Net Appendix C: Using PHPMyAdmin

Creating a User
1. Select the Privileges Tab

2. Select Add a new User

3. Enter the Details.

This will include:

• The username and password

• The server address

• The databases which this user can use

• The data privileges. The first 4 are for the standard SQL statements,

while the last allows importing from files.

Creating a Table

Using the GUI 19

Appendix C: Using PHPMyAdmin PHP: Additional Notes

1. Select the database from the panel on the left:

2. In the next window, enter the name of the new table. Estimate the number of
fields you will need. This is purely for layout; you can always add to their
number later. Press Go:

3. In the next window, enter the names and attributes of the fields in the table, and
select Save:

There is also a section to allow you to add more fields, with a Go button. Don’t
mistake this for saving the table.

4. When finished, you will see the following SQL statement:

20 Using the GUI

Copyright © 2012: Comparity Net Appendix C: Using PHPMyAdmin

Adding a Record
1. Having selected the database, select the table from the panel on the left:

2. Select the Insert tab:

3. You will see a form to enter your data:

4. The form describes the type of data, whether null is permitted, and fills in the
default values. You can also use a function from the function list to modify the
value you enter.

Using the GUI 21

D
Appendix D: Configuring

PHP

PHP: Additional Notes Copyright © 2012: Comparity Net

Appendix D: Configuring PHP PHP: Additional Notes

How to Configure PHP
At its most fundamental level, you can reconfigure PHP by compiling it with different
options, or by including different libraries to supplement its behaviour. However, the
following three techniques are used for a working implementation of PHP:

php.ini

PHP uses settings from the php.ini file when it starts up. These settings affect
all PHP scripts on the server, so changes to this file are global.

Generally, php.ini is inaccessible if you are not using your own personal
server, such as a hosted or coporate server. If you do make changes to this
file, then you will need to restart your web server to reload these settings.

.htaccess

If you are running PHP under the Apache web server, then you may be able
to use the .htaccess file to adjust your configuration. (The dot at the
beginning of its name tends to hide it from view on Unix-type servers such
as Linux, and is common for configuration files.)

The .htaccess file should be placed in a directory where you want the
changes to be made. It will be applicable to the current directory as well as
all of the subdirectories. You can have different .htaccess files in different
directories: the current settings will always override the settings of parent
directories.

Apache will apply the settings when it loads a file. This means that changes
are instantaneous, and you will not have to restart your server. It also means
there is a slight overhead of additional file handling when you load pages.

php ini functions

PHP will also allow you to re-configure settings using PHP functions. This is
most suitable if you want to make changes for a single script (or a number of
scripts using an included configuration script). It is also an option if your
server cannot support .htaccess files, or if it deliberately ignores them.

Not all PHP settings can be changed this way. In particular, some changes
will be made too late, since they may be required if there are problems with
processing the script altogether.

24 How to Configure PHP

Copyright © 2012: Comparity Net Appendix D: Configuring PHP

Setting PHP options
Generally each setting has a name and a value. In php.ini the format is:

php.ini setting_name = value

For .htacess files, which may include other non-php settings, the format is:

.htacess php_value setting-name value

For a PHP function, you use the function ini_set(name,value). In this function,

both parameters are supposed to be strings, though the second parameter (value) may
be a number:

function ini_set(name,value);

Some Useful Configuration Options
Below are some PHP configuration options which you may find useful for individual
scripts or projects. They will be described for php.ini, .htaccess and php ini functions.

PHP Execution
The following settings may be useful for some scripts which unusually large
processing requirements.

max_execution_time = 30

This setting forces PHP to timeout if the script has been going too long, such
as in an infinite loop. Generally speaking, 30 seconds should be plenty,
though more time may be needed occasionally for processing a large amount
of data.

max_input_time = 60

Input Timeout measured in Seconds

memory_limit = 16M

Memory Limit measured in bytes

SMTP Server
SMTP = localhost

Generally, the SMTP host is the same as the Web server (as with the database
server), but on some systems, you may need to set it to a different IP address.
This is especially the case when developing on a Windows platform without
a built-in mail program.

File Uploads
upload_max_filesize = 2M
post_max_size = 8M

Some Useful Configuration Options 25

Appendix D: Configuring PHP PHP: Additional Notes

PHP limits the size of individual files, as well as the total size for all
uploaded data, including uploaded files. If you wich to accept larger files,
then change these settings.

Legacy Settings
PHP originally used some settings to make scripting easier. Unfortunately, they also
backfired, and so should be disabled. In modern versions they are disabled by default,
but you should make sure.

register_globals = Off

register_globals enabled all data from the web browser, including

cookes, POST data and GET data (including anything in a query string) to be
copied into PHP variables. Needless to say this is inherently insecure, as the
script has no way of determining the source of data.

If your server has this turned on, you should use this configuration option
and look for another host.

magic_quotes_gpc = Off

As an early attempt to avoid SQL injection attacks, PHP automatically

“escaped” all quote characters (putting a back-slash \ in front of them).

However, this is an incorrect solution (proper SQL should use two single

quotes '' to escape them), and generally made a mess of legitmate quote

characters, and should therefore be disabled.

A better way of avoiding SQL injection attacks is to use prepared SQL
statements, available in all decent modern SQL databases.

26 Some Useful Configuration Options

Copyright © 2012: Comparity Net Appendix D: Configuring PHP

Sessions
PHP Sessions allow you to keep track of user-related data between pages. Session data
is automatically refreshed every time the user re-visits a page in your application, but,
since you cannot rely on a user notifying you when they have left the site, PHP will
automatically expire the data after a certain time.

session.gc_maxlifetime = 600

This settings, measured in seconds, determines when the session can be
regarded as expired. If the user visits a page within this time, then the
timeout will be renewed.

session.gc_probability = 1

session.gc_divisor = 100

PHP does not actually expire the session data directly after the lifetime of the
session. Rather, the old session will remain until PHP gets around to it, so
the lifetime is really a minimum life time, but not guaranteed to be the end.
PHP will remove all data based on a probability calculation:

probability= session.gc_probability
session.gc_divisor

By default session.gc_divisor is 100, meaning that sessions will expire

1 time in 100. In a busy server environment, this may be a few seconds (after

the max_lifetime setting), but for testing and development, this may be a

much longer time. For this reason, you may wish to change this to 1 for
testing only.

Error Reporting
PHP will normally report on errors, either on the screen or in a log file. Error reporting
can be set to different levels, and you may choose whether PHP will display only
serious errors, or less serious errors from which PHP can continue. Generally, you
should display all possible errors during development (to help eliminate all bugs in
your code), but hide them for a production site (displaying errors is not only
unprofessional, but can create security issues).

error_reporting = E_ALL

display_errors = On
log_errors = On

These settings are best for development.

Note that these settings are best set from .htaccess, rather than from a

PHP function. Since a script may have errors which affect the whole of the
script, it may not have the opportunity to enable error reporting. This will
result in the “white screen of death”, a blank screen where an error message
might have been.

Some Useful Configuration Options 27

Appendix D: Configuring PHP PHP: Additional Notes

Sample Configuration Settings
Below are sample configuration settings in both .htaccess form and as PHP

functions (you may gather those PHP function calls into a configuration file to be
included).

Note the subtle differences between formats and values.

The .htaccess file options all begin with php_value, since .htaccess can include

non-PHP settings, and do not have equals (=) before the values. Also, values such as

E_ALL are converted to -1, since E_ALL has a specific meaning to PHP, but not to

Apache.

The PHP functions all follow the same pattern. All values have been written as strings,

though numbers can be written bare. Also note that PHP ini functions may be

individually included in individual scripts

.htaccess

.htaccess
SMTP

php_value SMTP "localhost"

Uploads
php_value post_max_size 8M
php_value upload_max_filesize 2M

Legacy
php_flagregister_globals Off
php_flagmagic_quotes_gpc Off

Sessions
php_value session.gc_probability 1
php_value session.gc_divisor 1
php_value session.gc_maxlifetime 600

Errors
php_value error_reporting -1
php_flagdisplay_errors On
php_flaglog_errors On

Misc
php_value max_execution_time 30

28 Sample Configuration Settings

Copyright © 2012: Comparity Net Appendix D: Configuring PHP

config.php

<?php
// php.ini changes
// see http://www.php.net/manual/en/function.ini-set.php
// http://www.php.net/manual/en/configuration.changes.php
// http://www.php.net/manual/en/ini.list.php

// SMTP
ini_set('SMTP','localhost');

// Uploads
ini_set('post_max_size','8M');
ini_set('upload_max_filesize','2M');

// Legacy
ini_set('register_globals','0');
ini_set('magic_quotes_gpc','0');

// Sessions
ini_set('session.gc_probability','1');
ini_set('session.gc_divisor','100');
ini_set('session.gc_maxlifetime','1440');

// Errors
ini_set('error_reporting','E_ALL');
ini_set('display_errors','1');
ini_set('log_errors','1');

// Misc
ini_set('max_execution_time','30');

?>

Sample Configuration Settings 29

E
Appendix E: PDO

PHP: Additional Notes Copyright © 2012: Comparity Net

PDO (PHP Data Objects) provides a vendor-neutral method of accessing a
database through PHP. This means that, once you have established a
connection to the specific database, the methods used to access and
manipulate data are all generic, and do not require re-writing if you change
the type of database. Features which may not be present in a particular
database will generally be emulated, or at least ignored.

The main references for PDO are:

http://www.php.net/manual/en/class.pdo.php
http://www.php.net/manual/en/class.pdostatement.php

 32 Appendix E: PDO

Copyright © 2012: Comparity Net Appendix E: PDO

PDO Objects
PDO makes use of two main objects. The PDO object itself represents a connection to
the database, and provides simple methods to execute an SQL statement. It also

provides a method to prepare an SQL statement for later use. The PDOStatement
object represents a prepared statement, as well as a result set from an executed SQL
statement.

PDO Object

This represents a connection to the Database. All database operations are initiated
through the PDO object. The PDO object is created when you connect to the database.
After that, you use its methods to access the database. The most useful methods are:

exec() Execute an SQL statement returning the number of rows

affected

query() Execute an SQL statement returning a result set as a

PDOStatement

prepare() Prepares a statement returning a result set as a PDOStatement.

You can use question marks (?) for values.

You can then call the execute(array()) method

PDOStatement Object

The PDOStatement represents a prepared statement, as well as a returned result set.

The name is possibly confusing, since it represents a prepared statement before it is
executed, as well as the result after it is executed.

A PDOStatement is created as a result of a PDO->query operation (where it

represents a result set), a PDO->prepare operation (where it represents a prepared

statement) or a PDO->execute operation (where it represents a result set from your

prepared statement).

PDO Objects 33

Appendix E: PDO PHP: Additional Notes

The most useful methods are:

For a prepared statement:

execute() Execute the prepared statement.

You can use an array of values to replace the question mark
parameters

For a result set:

fetch() Returns the next row.

Useful arguments: PDO::FETCH_ASSOC, PDO::FETCH_NUM,

PDO::FETCH_BOTH (default)

fetchAll() Returns the whole result set as an array

fetchColumn() Returns a single column of the next row.

PDOStatement allows you to iterate through the result set can be iterated with

foreach().

Working With PDO
PHP Data Objects allow you to work with a database without having to worry about
the details of the database functions. In principal, you can use the same code to work
with different database types, though some SQL statements may need adjustment, due
to differences between databases.

PDO makes use of two main objects. The PDO object itself represents a connection to
the database, and provides simple methods to execute an SQL statement. It also
provides a method to prepare an SQL statement for later use. The PDOStatement object
represents a prepared statement, as well as a result set from an executed SQL
statement.

34 Working With PDO

Copyright © 2012: Comparity Net Appendix E: PDO

Establishing a Connection
Before working with PDO, you will need to create a connection. This is in the form of a
PDO object, which represents the connection.

You will require the following:

• A connection string: this informs PDO which database you are connecting to.

This will also include the location of the data.

• User name and password. Depending on the database, you may need to

authenticate your connection.

$database='things';
$user='me';
$password='secret';

$dsn="mysql:host=localhost;dbname=$database"; // mysql
$dsn="sqlite:$database.sqlite"; // sqlite

A connection attempt may result in an error. The normal behaviour is to display as
much information as possible, but this is probably more than you wish to share with
others. For this reason, it is best to wrap the connection inside a try ... catch block:

try {
$pdo = new PDO($dsn,$user,$password); // mysql
$pdo = new PDO($dsn); // sqlite

} catch(PDOException $e) {
die ('Oops'); // Exit, displaying an error message

}

Other Databases
If you want to connect to a different database, the following connection strings may be
used:

$dsn="pgsql:host=localhost;dbname=$database";
$dsn="odbc:Driver={Microsoft Access Driver (*.mdb)};

Dbq=C:\$database.mdb;Uid=Admin";
$dsn="sqlite::memory";

For the connection script you may use:

try {
$pdo = new PDO($dsn); // sqlite, MSAccess
$pdo = new PDO($dsn,$user,$password); // mysql, postgresql, etc

} catch(PDOException $e) {
die ('Oops'); // Exit, displaying an error message

}

Working With PDO 35

Appendix E: PDO PHP: Additional Notes

Prepared Statements and SQL Injection
The Risk: SQL Injection
The biggest risk to your database comes from including user data in your SQL
statements. This may be miss-interpreted as part of the SQL statement. Where a user is
deliberately supplying this data to break into the database, this is called SQL Injection.

For example, suppose you are performing a simple login using an email and password
supplied by the user. The SQL statement might be something like this:

SELECT count(*) FROM users WHERE email='...' AND passwd='...'

Now, suppose the user supplies the following as their email address:

fred' OR 1=1; --

This clearly is not a proper email address, but it might still be inserted as follows:

SELECT count(*) FROM users WHERE email='fred' OR 1=1; -- ' AND passwd='...'

The condition OR 1=1 will always be true, and what follows after the comment code

-- will be ignored. This simple injection will allow a user to break into the database.

The problem arises because the inserted data will be interpreted with the rest of the
SQL.

Prepared Statements
Most databases allow you to prepare a statement before executing it. SQL statements
need to be interpreted, checked for errors, analysed and optimised, all before executing
them with actual data.

To protect yourself against SQL injection, you prepare your SQL statement first, and
then execute it with the data afterwards. When the data is inserted, it can no longer be
interpreted, and so will be passed purely as data. Note that the above email address
would presumably not be in the database, and would result simply in a failed login.

To prepare and execute the data, you would follow these steps:

1. Define your SQL, using question marks as place holders

2. Using the PDO object, prepare the SQL. This will result in a PDOStatement
object

3. Execute the PDOStatement object with an array of the data to replace the

question marks

4. If your SQL is a SELECT statement, you will need to examine the results (later).

For example:

$sql='SELECT * FROM users WHERE email=? AND passwd=?';
$sql='INSERT INTO users(email,passwd) VALUES(?,?)';
$sql='UPDATE users SET email=?, passwd=? WHERE id=?';
$sql='DELETE FROM users WHERE id=?';

36 Prepared Statements and SQL Injection

Copyright © 2012: Comparity Net Appendix E: PDO

$pds=$pdo->prepare($sql);

$pds->execute(array(...,...));

Note that you do not put the question mark place holders inside quotes even if they
represent strings. If you do, the quotes will be added to the data.

Note also that execute always takes an array argument, even if there is only one value.

Remember, preparing your SQL statements is important if your data comes from a
user. This is is essential to protect yourself from SQL injection

If there is no user data involved, or if the data is guaranteed be numeric (which could
not possibly contain spurious SQL), then you might prefer the direct methods below.

Repeated Execution
Another use of prepared statements is with repeated execution. Whether the data is
suspect or not, if you need to execute the same statement many times, it can be more
efficient to prepare the statement once, and to execute the prepared statement many
times, as in a loop.

For example, suppose you have a number of rows to be inserted, the data for which
may already be inside an array. Then you could execute the SQL as follows:

$sql='INSERT INTO products(description) VALUES(?)';
$pds=$pdo->prepare($sql);

foreach($products as $p) {
$pds->execute(array($p));

}

Even if the data isn’t suspect, the above code needs to prepare the statement only once,
and so the overhead of interpreting, analysing and optimising the statement is reduced.
The multiple executes will run much faster.

Prepared Statements and SQL Injection 37

Appendix E: PDO PHP: Additional Notes

Unprepared (Direct) SQL Statements
If there is no risk of malicious user data, then you may not need to prepare your
statements first. This will result in slightly simpler code. In this case, you can use one of
two PDO functions to run your SQL statement.

SELECT Statements
SELECT Statements expect a result set. In some cases, the result set will have only one
row, while in some other cases, the result set may have many.

To get data using an unprepared statement:

1. Define your SQL, including the data. This may include data in variables, if you
use a double-quoted string.

2. Using the PDO object, use the query() function on the SQL statement. This

will also result in a PDOStatement object, but this will contain the result set if

any.

3. In the case of a SELECT statement, you will need to examine the results (later).

For example:

$sql='SELECT code,description,price FROM products';
$sql="SELECT code,description,price FROM products WHERE id=$id";

$pds=$pdo->query($sql);

The variable $pds will contain the result set. It is technically a PDOStatement object,

though, in this case, does not contain a prepared statement.

The variable $id in the second SQL statement above may be subject to SQL injection

unless your data has already been tested for this. For example, the PHP intval()
function will always guarantee an integer, which cannot contain malicious SQL.

38 Unprepared (Direct) SQL Statements

Copyright © 2012: Comparity Net Appendix E: PDO

INSERT, UPDATE, and DELETE Statements.
INSERT, UPDATE and DELETE statements do not expect a result set. In each case PDO

will return a value which is the number of records affected by the SQL statement, but
you may choose to ignore this result.

To put data using an unprepared statement:

1. Define your SQL, including the data

2. Using the PDO object, use the exec() function on the SQL statement. This will
return the number of rows affected.

For example:

$price=20; $id=3;
$sql="UPDATE products SET price=$price,modified=now() WHERE id=$id";
$pdo->exec($sql); // or $rowcount=$pdo->exec($sql);

The variable, $rowcount, will contain the number of rows affected. Typically for an

INSERT statement, or when a WHERE clause has been used to identify a single row, this

will be 1. However, it may contain 0 or any other number, depending on the SQL
statement.

Again, as above, your variables need to be checked for malicious SQL before including
them directly into an SQL statement.

Unprepared (Direct) SQL Statements 39

Appendix E: PDO PHP: Additional Notes

PDO Techniques
SELECT Data
To select data from a database table, use the SELECT command:

SELECT ... FROM ...;
SELECT ... FROM ... WHERE ...;

Prepared Statements Unprepared Statements

$sql='SELECT ... FROM'
$pds=$pdo->prepare($sql);
$pds->execute(array(...));

$sql="SELECT ... FROM";

$pds=$pdo->query($sql);

In both cases, you will have a result set in $pds.

Fetching Data

To retrieve the data, you can fetch one row at a time, or you can iterate through
collection.

To fetch a single row:

$row=$pds->fetch();

To iterate through the collection:

while($row=$pds->fetch()) {
...

}

or, more simply:

foreach($pds as $row) {
...

}

40 PDO Techniques

Copyright © 2012: Comparity Net Appendix E: PDO

The Result Set

Each row in a result set, unless set otherwise, will be an array containing the data
twice, both with numbered keys, and with associative keys.

For example:

SELECT code,description,price FROM products

will return rows of the following arrays:

key value

code [code]

description [description]

price [price]

0 [code]

1 [description]

2 [price]

This redundancy will allow you to read the values in a convenient way. For example, to
use the row data inside a string, you may wish to use the associative keys:

$tr="<tr><th>$row[code]</th><th>$row[description]</th>
<th>$row[price]</th></tr>";

On the other hand, you can use the numeric keys as follows:

$code=$row[0];
$description=$row[1];
$price=$row[2];

In the above example, you can also use PHP’s list construct:

list($code,$description,$price)=$row;

The list construct only works with numeric keys.

PDO Techniques 41

Appendix E: PDO PHP: Additional Notes

Fetching the Whole Result Set

You can fetch the entire result set into a array with all of the rows:

$rows=$pds->fetchAll();

You can, but you probably shouldn’t, unless you can be sure that your result set isn’t
too big for memory.

Fetching a Single Column

Sometimes, you need only one column of the result set. For this you can use

fetchColumn(). The optional parameter is the column number (starting at 0, which

is the default). Each subsequent call to fetchColumn() will fetch the same column

from the next row.

42 PDO Techniques

Copyright © 2012: Comparity Net Appendix E: PDO

Simple PDO Recipes
Count Records

Count All Records

$sql='SELECT count(*) FROM ...';
$count=$pdo->query($sql)->fetchColumn();

or

$count=$pdo->query('SELECT count(*) FROM ...')->fetchColumn();

Count Selected Records (Prepared)

$sql='SELECT count(*) WHERE ...';
$pds=$pdo->prepare($sql);
$pds->execute(array(...));

$count=$pds->fetchColumn();

Login Script
$sql='SELECT ... FROM users WHERE email=? AND passwd=?';
$pds=$pdo->prepare($sql);
$pds->execute(array(...));

if($row=$pds->fetch()) {
// successful; $row now contains the rest of the details

}
else {

// unsuccessful ($row is FALSE)
}

Simple PDO Recipes 43

Appendix E: PDO PHP: Additional Notes

Summary of PDO
Connection
To connect to a database

$pdo=new PDO(DSN[,USER,PASSWORD]);

Because the default error reporting might give away to much detail, it is normal to
include the connection inside a try ... catch block:

try {
$pdo=new PDO(DSN[,USER,PASSWORD]);

}
catch (PDOException $e) {

// Handle Error
}

Executing Simple Statements
Simple statements include any data directly in the SQL string.

INSERT, UPDATE & DELETE

$sql="...";
$count=$pdo->exec($sql);

The returned value will be the number of rows affected.

SELECT Statements

$sql="SELECT ... FROM ... ";
$result=$pdo-?query($sql);

The returned value will be a PDOStatement pointing to the result set. See Reading

Data (below) on how to use this.

44 Summary of PDO

Copyright © 2012: Comparity Net Appendix E: PDO

Executing Prepared Statements
PDOStatement=PDO->prepare($sql);
PDOStatement->execute(array(...));

Although some data may be included directly in the SQL string, the major benefit from
preparing statements is the ability to insert the data after the SQL string has been
prepared. In this case you replace the data with question mark place holders; place
holders are never to be quoted, even if they are strings.

$sql='INSERT into ... VALUES(?,?)';
$pds=$pdo->prepare($sql);
$pds->execute(array(...,...));

Reading Data
Whether or not the SQL statement was prepared, the data set will always be in a

PDOStatement.

Reading a Single Row

Each row is an array containing data with both numeric and associative keys. You may
use either (or both) types of key as convenient.

To fetch a single row:

PDOStatement->fetch();
$row=$pds->fetch();

This will fetch the next row, which may, of course be the first or only row.

If there is no next row (or no result to begin with), fetch() will return FALSE.

Reading Multiple Rows

To fetch multiple rows:

while($row=PDOStatement->fetch() {
…

}

or

foreach(PDOStatement as $row) {
…

}

Each will produce exactly the same result. The foreach statement is similar to

iterating through an array, and automatically fetches the next row and assigns it to

$row.

Summary of PDO 45

Appendix E: PDO PHP: Additional Notes

Reading a Single Column

For convenience there is a function which will read a single value from a row. This will
return a simple value, and avoids having to deal with the data in an array.

PDOStatement->fetchColumn([col]);

The optional parameter is the number of the column, and defaults to 0, the first
column.

This is particularly handy when the result set itself has only one row.

For example, to count the number of records in a table:

$sql='SELECT count(*) FROM users';
$result=$pdo->query($sql);
$count=$result->fetchColumn(0);

or, more simply,

$count=$pdo->query('SELECT count(*) FROM users')->fetchColumn();

Getting the Last Auto-Incremented Key
Many databases offer an auto-incremented value for a field, typically a primary key.
This is either as an auto-incremented attribute of the field, or as a special sequence.
When a new roe is inserted into the table, and the auto-incremented field is omitted or

set to NULL, its value will be set to the next number in the sequence.

Generally speaking Auto-Incremented fields are a non-standard feature of SQL.
Although most databases offer a version of this feature, they are implemented
differently. In particular, it can be difficult to get the last auto-incremented value
reliably.

PDO->lastInsertId()

PDO wraps the various techniques for getting the last auto-incremented value inside

the PDO->lastInsertId() function. Note that this will give the last auto-

incremented value from the database, which may or may not be that of your table of
interest. Or to put it another way, you should call this function immediately after you
insert the record, before its value is lost on the next insert.

46 Summary of PDO

Copyright © 2012: Comparity Net Appendix E: PDO

Error Reporting
By default, PDO is silent about errors. This can make trouble shooting very difficult if
there is an error with your SQL statement, but the PHP code itself is OK. Sometimes, if
you are expecting a record set, the error will be apparent in the next few lines, as you
will end up trying to read from an empty record set.

At the development stage, you will want your errors to be as clear as possible, so you
might want to change your error reporting to be less silent. For this we use the

PDO->setAttribute() to change the ATTR_ERRMODE property:

// Default
PDO->setAttribute(PDO::ATTR_ERRMODE,PDO::ERRMODE_SILENT);

// Warning Only
PDO->setAttribute(PDO::ATTR_ERRMODE,PDO::ERRMODE_WARNING);

// Die, displaying Error
PDO->setAttribute(PDO::ATTR_ERRMODE,PDO::ERRMODE_EXCEPTION);

For development, you should use the ERRMODE_EXCEPTION value. You might want to

set it back to ERRMODE_SILENT for a production environment.

Summary of Process

Summary of Process 47

F
Appendix F: Code

Snippets
In the following exercise, you will develop a database for your code snippets. Apart from the
practice, you may find this database a useful resource for your development.

To begin with, you will need to create a new database called “snippets” and a new table, also
called “snippets”.

PHP: Additional Notes Copyright © 2012: Comparity Net

Appendix F: Code Snippets PHP: Additional Notes

The Snippets Table
You can use the following structure for your table1:

CREATE TABLE snippets (
id INT NOT NULL AUTO_INCREMENT,
collection INT NULL DEFAULT NULL,
owner INT NULL DEFAULT NULL,
title VARCHAR(48) NOT NULL,
content TEXT NULL DEFAULT NULL,
entered DATETIME NULL,
modified DATETIME NULL,
PRIMARY KEY (id)

) ENGINE = InnoDB;

The fields are as follows:

id The auto-incremented primary key

title A descriptive title

content The text of the snippet

entered The date the snippet was created

modified The date the snippet was last update

The two fields, collection and owner will not be used at this stage, but will allow a

future refinement involving multiple collections and contributors.

1 This SQL statement is for MySQL. For testing purposes, a file called snippets.sqlite is
included, which allows you use the built-in SQLite database.

50 The Snippets Table

Copyright © 2012: Comparity Net Appendix F: Code Snippets

The Page
The index.php page contains mainly a single form with multiple submit buttons.

<form action="" method="post">
<div id="titles">

<select name="snippets" size="16">
<option value="0">New Snippet</option>
<!-- Snippet Titles -->

</select>
<button type="submit" name="select">Select Snippet</button>

</div>
<div id="editnote">

<p><input type="text" name="id"
value="<?php print $id; ?>" /></p>

<p><label for="addtitle">Title:</label>

<input type="text" name="title" id="title" class="text"
value="..." />

</p>
<p><label for="content">Content:</label>

<textarea name="content" id="content" cols="20" rows="12">
...</textarea>

</p>
<div id="control">

<!-- if new -->
<p>
<button type="submit" name="insert">Add</button>

</p>
<!-- else -->

<p>
<button type="submit" name="update">Update</button>
<button name="delete">Delete</button>

</p>
<!-- end if -->

</div>
</div>

</form>

The select element will contain a list of existing snippet titles to select one to be edited
or deleted. Its first element (New Snippet) will be used to insert a new snippet.

The text box and text area will contain the data from an existing snippet for editing or
reviewing.

The control area will contain either an insert button, if a new one is selected, or update
and delete buttons if an existing one is selected.

The Page 51

Appendix F: Code Snippets PHP: Additional Notes

Connecting to the Database
Create a file called db.php, and save it into your includes folder.

The connection script is a standard connection using PDO. We will use the variable
$pdo in future scripts.

Enter the following2:

$database='snippets';
$user='snippets'; // or whatever
$password='password'; // or whatever
//$dsn="sqlite:includes/$database.sqlite";
$dsn="mysql:host=localhost;dbname=$database";
try {

//$pdo = new PDO($dsn);
$pdo = new PDO($dsn,$user,$password);

} catch(PDOException $e) {
die ("Cannot connect to database $database");

}

At the top of your index.php file, include the following:

require_once('includes/db.php');

Adding a Record
The form contains a button named “insert”. Currently the update and delete buttons
are also visible, but later we will choose between them.

To test whether the form has been submitted via the insert button, test for its existence
in the $_POST array.

require_once('includes/db.php');

if(isset($_POST['insert'])) {

}

We don’t care what its actual value is, just whether it has been set.

First, we will read in the text fields. Just in case, we will also trim them, removing
spaces at the beginning or end:

if(isset($_POST['insert'])) {
$title=trim($_POST['title']);
$content=trim($_POST['content']);

}
(At this point, we should check whether they have been filled, but we will deal with
that later).

2 This code is for a connection to MYSQL. If you are using the sample snippets.sqlite
database, you can use the commented code instead (the $dsn and $pdo assignment
statements). Don’t forget to comment out the MYSQL versions.

52 Adding a Record

Copyright © 2012: Comparity Net Appendix F: Code Snippets

Because the data comes from the user, it should be treated with care. All outside data
should be regarded as a potential SQL injection attack, but is easily managed using
prepared statements.

The SQL for inserting the data is:

$sql='INSERT INTO snippets(title,content) VALUES(?,?);';

The question mark place holders will be replaced with data after the statement has
been prepared, preventing the data from being misinterpreted as additional SQL.

We will now prepare the statement:

$pdoStatement=$pdo->prepare($sql);

Although you can bind the data separately to the statement at this point, it is much
simpler to bind the data when you execute the prepared statement. This is done by
passing an array of values:

$pdoStatement->execute(array($title,$content));

Remember that the data must be in an array (even if there is only one value), every
question mark must have a corresponding value, and that the values must be in the
correct order.

This will give us:

if(isset($_POST['insert'])) {
$title=trim($_POST['title']);
$content=trim($_POST['content']);
$sql='INSERT INTO snippets(title,content) VALUES(?,?);';
$pdoStatement=$pdo->prepare($sql);
$pdoStatement->execute(array($title,$content));

}

For convenience, we will want a copy of the id of the new record. The id will be used
for display later. However, since the id is and auto incremented value, we will need to
get the value from the database. This is given by the lastInsertId() method of PDO:

$id=$pdo->lastInsertId();

Adding a Record 53

Appendix F: Code Snippets PHP: Additional Notes

The finished code reads:

if(isset($_POST['insert'])) {
$title=trim($_POST['title']);
$content=trim($_POST['content']);
$sql='INSERT INTO snippets(title,content) VALUES(?,?);';
$pdoStatement=$pdo->prepare($sql);
$pdoStatement->execute(array($title,$content));
$id=$pdo->lastInsertId();

}

Populating the List
Now that we have something in the table, we will want to see it.

We will create a variable called $snippets. This will contain the option elements to go
into the select element in the form.

An option element has this form:

<option value="...">...</option>

The text content of the element is what the user sees. The value of the element is what
will be posted. In our case, the text will be the title of the snippet, while the value will
be the id.

To begin with, this array will be an empty array.

Towards the end of the PHP block (after the processing of the form data), add the
following:

$snippets=array();

Now, we will read the table for a list of ids and titles.

$sql='SELECT id,title FROM snippets';

Since we are not working with user data, we can query the database without having to
prepare a statement first:

$pdo->query($sql)

This will give us a result set (which is technically a PDOStatement), which we can assign
to a variable:

$results=$pdo->query($sql);

The results can then be iterated like an array:

foreach($results as $row) {

}
More simply, you do not have to use an intervening variable, and you can iterate
through the query result set directly:

foreach($pdo->query($sql) as $row) {

}

54 Populating the List

Copyright © 2012: Comparity Net Appendix F: Code Snippets

Each $row variable will be an array with the data. Although the array also contains
numbered elements with the same data, we will be using the associative elements:

foreach($pdo->query($sql) as $row) {
$snippets[]="<option value=\"$row[id]\" $selected>

$row[title]</option>";
}

Since the associative elements are placed inside the string, you do not quote the keys, even
though they are text keys!

The $snippets[]= notation means that a new value will be added to the end of the

array. This is also known as pushing a value onto the array.

When the array is complete, we will convert into a string, since it is this string which
must be printed into the HTML.

The implode() function (also known as join()) takes two parameters: the glue

(what comes between the values), and the array.

$snippets=implode('',$array);

In this case, we want nothing between the values (in HTML the only thing permissible
between option elements is space).

Note that by re-using the $snippets variable, we have replace an array with a string.
However, we are still using the variable for the same purpose.

The completed code should look like this:

$snippets=array();
$sql='SELECT id,title FROM snippets';
foreach($pdo->query($sql) as $row) {

$selected= $id==$row['id'] ? ' selected="selected"' : '';
$snippets[]="<option value=\"$row[id]\" $selected>$row[title]</option>";

}
$snippets=implode('',$snippets);

Populating the List 55

Appendix F: Code Snippets PHP: Additional Notes

Displaying an Existing Snippet
Although part of the same form as the rest, the select element has a button closely
associated with it.

Later we will include some JavaScript which will replace this button with an action.
This is not required, especially if JavaScript has been turned off, so the JavaScript will
only be applied if available.

We will put the code before the other input handling code, so we can use the results in
later code if we need.

The select element is named “snippets”. To check whether one has been selected, we
will check the post array. If one has been selected, we will set the id:

require_once(...);

if(isset($_POST['snippets'])) {
$id=...;

}

Remember that the first option, New Snippet, has a value of 0. Since the snippet ids
start at 1, this will (later) be use to indicate that we want a new record.

As a zero, 0, may also have been selected, we really want to test whether the value is
non-zero, rather than whether it has been set:

if($_POST['snippets']) ...

However, if no value has been selected at all, the above would generate an error, so we
add the error suppression operator (@):

if(@$_POST['snippets']) {
$id=...;

}

The error suppression operator ignores the potential error, and can be used in cases
where “no value” is an acceptable alternative.

The above could be interpreted as “if snippets, where it exists, is non-zero, then ...”.

If none has been selected, then we will set the $id to 0:

if(@$_POST['snippets']) {

}
else $id=0;

56 Displaying an Existing Snippet

Copyright © 2012: Comparity Net Appendix F: Code Snippets

Although the data should have come from a form, and we have constructed this data
ourselves, it is still best convert the value to an integer:

if(@$_POST['snippets']) {
$id=intval($_POST['snippets']);

}

The intval() function will convert as much as possible to an integer, stopping at the

first invalid character. If there is no valid character, the result will be 0.

The SQL statement will select the title and content from the snippets table matching the
id. For good measure, we will also count the results.

Since the id is unique, you will never get more than one row, and a corresponding
count of 0. An invalid id would result in an empty row. However, if you include a
count, you will get one row again, with a count of 0, and NULL for the remaining
fields. This will simplify testing.

if(isset($_POST['snippets'])) {
$id=intval($_POST['snippets']);
$sql="SELECT count(*), title, content FROM snippets WHERE id=$id;";

}

It is perfectly safe to include this user data into this SQL statement, since the intval()
function has converted it into an integer, making it incapable of being interpreted as
additional SQL.

Since the SQL is safe, we can run the query directly:

$pdo->query($sql)

Since there will only be exactly one row, we can fetch it immediately:

$pdo->query($sql)->fetch();

The result, as usual, will be an array of values. This time, it is more convenient to use
the numbered keys, since we can use them in a list():

list($count,$title,$content)=$pdo->query($sql)->fetch();

The list() operator (this is not technically a function, though it looks like one) will

copy the numbered elements of an array into the listed variables. It is a convenient way
of working with multiple variables.

In the event of an invalid id, we will have a $count of 0, and NULL for the $title and

$content, which we will deal with presently.

Displaying an Existing Snippet 57

Appendix F: Code Snippets PHP: Additional Notes

If the count is 0, we will set the id to 0, which will also indicate a new entry:

if(!$count) $id=0;

This will give us:

if(isset($_POST['snippets'])) {
$id=intval($_POST['snippets']);
$sql="SELECT count(*), title, content FROM snippets WHERE id=$id;";
list($count,$title,$content)=$pdo->query($sql)->fetch();
if(!$count) $id=0;

}

If a valid snippet has not been selected, and hence the id is 0, we will set the title and
content to empty strings:

else $id=0;
if(!$id) $title=$content='';

Note that is possible to assign the empty string to both variables in one statement.

Displaying the Content on the Form
Having read the title and content, or set them to empty strings, we will display them
on the form.

For a text box, an input element, you display the old or default value in the value
attribute:

<input type="text" name="..." value="..." />

In this case we will insert a PHP print statement of the variable. To be safe we will also
include the error suppression operator, in case the value was not set:

<input type="text" name="title" value="<?php print @$title; ?>" />

For a text area, the old or default value is between the opening and closing tags:

<textarea name="...">...</textarea>

In this case we will use:

<textarea name="content"><?php print @$content; ?></textarea>

Finally, though this will not be displayed, we will need to store the id. This will be used
when later we update or delete the record, and so the record will need to be identified.

58 Displaying the Content on the Form

Copyright © 2012: Comparity Net Appendix F: Code Snippets

To store a value in a form without user intervention, we use a hidden field. This field is
not displayed on the page (though it is still visible in the page source).

<input type="hidden" name="..." value="..." />

Generally you would hard code the value, since the user is unable to enter the value
otherwise. A JavaScript might also be used to set the value.

In our case, we will set the hidden field for the id:

<input type="hidden" name="id" value="<?php print @$id; ?>" />

The Submit Buttons
Although a form may have many submit buttons, you should still hide the buttons
which are not relevant, or which might interfere with you application.

In this case, we will display an insert button if the record is a new record, or the update
and delete buttons if the record is an existing record.

The simplest way to distinguish between a new record and an existing record is with

the id. A value of 0 (zero) will indicate a new record, while a non-0 id will indicate an

existing record.

We have a div (control) which contains the various buttons.

PHP allows you to intersperse PHP blocks with ordinary HTML (or other text).
Remember, that what is not inside a PHP block is regarded as PHP output.

A useful structure is:

<?php if(...) { ?>
<!-- PlanA -->

<?php } else { ?>
<!-- PlanB -->

<?php } ?>

If the condition is true, then the PlanA text will be output. Otherwise the PlanB text

will be output.

For this project, we will test whether the id is 0 (new record). If so, we will display the
insert button. Otherwise we will display the update and delete buttons.

The Submit Buttons 59

Appendix F: Code Snippets PHP: Additional Notes

Enter the following:

<?php if(...) { ?>
<!-- PlanA -->

<?php } else { ?>
<!-- PlanB -->

<?php } ?>

Replace the condition with:

<?php if(!$id) { ?>

This will be true if $id is not something, that is, it is zero.

Replace PlanA with the insert button, and PlanB with the update and delete buttons.

The code should read:

<div id="control">
<?php if(!$id) { ?>

<p><button type="submit" name="insert">Add</button></p>
<?php } else { ?>

<p><button type="submit" name="update">Update</button>
<button name="delete">Delete</button></p>

<?php } ?>
</div>

Updating Records
Now that we can add and display records, we will look at changing them.

The key to updating is to have an id to identify the record being updated. This id
comes from the selected snippet earlier, copied into the hidden id field.

To check whether a record is being updated, we check its submit button. This is
logically placed after the test for insert, thought it doesn't have to be:

if(isset($_POST['insert'])) {
...

}
elseif(isset($_POST['update'])) {

}

Note that as you can only press one submit button, you do not need the elseif clause -
you could simply have used another if. The elseif is only required when both
conditions might be true, but you only want one to be executed. However, the use of
elseif here helps to group the tests together.

Just as with the insert script, we will read in the title and content from the POST array.
In addition, we will also read in the id, which comes from the hidden field previously
set. This value will be processed through intval():

elseif(isset($_POST['update'])) {
$id=intval($_POST['id']);
$title=trim($_POST['title']);
$content=trim($_POST['content']);

60 Updating Records

Copyright © 2012: Comparity Net Appendix F: Code Snippets

}

As before, we should really check whether the title and content have been supplied.

To update a record, we use the SQL UPDATE command.

UPDATE ... SET ...=..., ...=...;

The UPDATE command is potentially disastrous to a database, since it will change all
of the records unless you qualify it with a WHERE clause.

UPDATE ... SET ...=..., ...=... WHERE ...=...;

In this case we will set new values for the title and the content, and use the WHERE
clause to select for the record's id:

UPDATE snippets SET title=...,content=... WHERE id=...;

Since we will be adding user data, we will need to prepare the statement first, and
execute it with data later. The values will be set with question mark place holders:

elseif(isset($_POST['update'])) {
…
$sql='UPDATE snippets SET title=?,content=? WHERE id=?;';
$pdoStatement=$pdo->prepare($sql);

}

Finally, we execute the command with data:

elseif(isset($_POST['update'])) {
…

$pdoStatement->execute(array($title,$content,$id));
}

The finished script should look like this:

elseif(isset($_POST['update'])) {
$id=intval($_POST['id']);
$title=trim($_POST['title']);
$content=trim($_POST['content']);
$sql='UPDATE snippets SET title=?,content=? WHERE id=?;';
$pdoStatement=$pdo->prepare($sql) or die('oops');
$pdoStatement->execute(array($title,$content,$id));

}

Deleting Records
Now we can delete records using the SQL DELETE command. Although this command
is also potentially disastrous for the same reasons, some would argue that it is better to
lose your data than to have bad data.

We will add another elseif block underneath the others. As before, the elseif is not
strictly necessary, since we can only press one submit button.

elseif(isset($_POST['delete'])) {

}

Deleting Records 61

Appendix F: Code Snippets PHP: Additional Notes

Again, as before, we will extract the id of the record:

elseif(isset($_POST['delete'])) {
$id=intval($_POST['id']);

}

To delete a record, we use the SQL DELETE command:

DELETE FROM ... DELETE FROM ... WHERE ...

The first form will delete all records. The second will delete only selected records.

Since the id has been processed through intval(), it cannot contain any harmful SQL.
This means it is safe to include it directly into the SQL string, and to execute it directly:

$sql="DELETE FROM snippets WHERE id=$id;";
$pdo->exec($sql);

Note that unlike SELECT statements, we use the exec() method of PDO, not the
query() method.

Finally, we reset the id, title and content:

$id=0;
$title=$content='';

The final code should look like this:

elseif(isset($_POST['delete'])) {
$id=intval($_POST['id']);
$sql="DELETE FROM snippets WHERE id=$id;";
$pdo->exec($sql);
$id=0;
$title=$content='';

}

Finishing Off
The project will now work and can be used for storing your code snippets or other
useful notes. However there are a few features which might make your project more
useful.

Data Validation
When we submit or update a snippet, you will need to check whether you have a title,
and depending on your policy, content (you may wish to allow empty content if you
plan on filling it later).

To begin with, we will have a variable called $error, and set it to an empty string. This
variable is best set just before the code which checks the insert and update operations:

$error='';
if(isset($_POST['insert'])) {

}
elseif(isset($_POST['update'])) {

}

62 Finishing Off

Copyright © 2012: Comparity Net Appendix F: Code Snippets

After the title and content variables have been set in the insert code, you will need
to test whether they both have a non-empty value. The if structure should embrace the
remaining code:

if(isset($_POST['insert'])) {
$title=trim($_POST['title']);
$content=trim($_POST['content']);
if($title && $content) {

$sql='INSERT INTO snippets(title,content) VALUES(?,?);';
$pdoStatement=$pdo->prepare($sql) or die('oops');
$pdoStatement->execute(array($title,$content));
$id=$pdo->lastInsertId();

}
}

Note that a convenient shorthand to test whether a variable has an empty value is
simply to test the variable itself. A non-empty string evaluates as true, while an empty
string evaluates as false.

Note also the use of the and operator (&&).

If either the title or content are empty, the else clause will assign an error message:

if($title && $content) {

}
else $error='<p class="error">Please complete

the Title & Contents</p>';

The same needs to be done for the update code.

Finally, the error message needs to be displayed. In the form, just below the paragraph
with the hidden form element, add the following PHP block:

<p><input type="hidden" name="id" value="<?php print $id; ?>" /></p>
<?php print $error; ?>

Since the $error variable will have been set to an empty string or to an error paragraph,
the print statement will safely print the results.

Highlighting the Current Record
When you select a snippet title and submit it, the newly refreshed page will not
highlight the selected title in the list.

To highlight a selected option in HTML, you can use the selected attribute:

<option value="..." selected="selected">...</option>

When we generate the list of options, we will insert the selected attribute when (or if)
the id of the current item matches the id selected with the previous submit. One simple
way of inserting an occasional attribute is to define a variable, and set it using the
conditional (ternary) operator:

$selected = test ? planA : planB;

Finishing Off 63

Appendix F: Code Snippets PHP: Additional Notes

The conditional operator uses either the first or the second value, depending on
whether the test evaluates as true.

The id selected will be in the variable $i, which will be 0 if no item has been selected.
We will compare this against the current row’s id:

$id==$row['id']

If true, we will use the string ' selected="selected"'; otherwise we will use the empty
string ''. Note the space at the beginning of the first string. This makes it easier to
insert into the HTML which requires a space between attributes.

$selected = $id==$row['id'] ? ' selected="selected"' : '';

It remains only to insert this string into the code for the option:

$snippets[]="<option value=\"$row[id]\" $selected>$row[title]</option>";

The resulting code should look like this:

foreach($pdo->query($sql) as $row) {
$selected= $id==$row['id'] ? ' selected="selected"' : '';
$snippets[]="<option value=\"$row[id]\" $selected>$row[title]</option>";

}

64 Finishing Off

Copyright © 2012: Comparity Net Appendix F: Code Snippets

Auto Submit
Currently, the snippets list comes with a submit button. Using JavaScript, you can have
the snippets list auto-submit. The following JavaScript will enable auto-submit, as well
as hide the submit button:

<script type="text/javascript">
window.onload=function() {

document.forms[0].select.style.visibility='hidden';
document.forms[0].snippets.onchange=function() {

document.forms[0].submit();
};

}
</script>

Finishing Off 65

	Contents
	Appendix A: Setting Up
	Installing WAMP
	Starting Up
	Location
	Shortcuts
	Installing
	SMTP & Mail
	Finish

	Installing & Setting Up Komodo Edit
	Suggested settings for Komodo Edit

	Useful Firefox Add-ons

	Appendix B: Virtual Domains
	How to fake a Local Domain
	Setting the hosts File
	Setting up Apache
	httpd.conf
	example.conf

	Appendix C: Using PHPMyAdmin
	PHPMyAdmin
	Using PHPMyAdmin
	Using the GUI
	Creating A Database
	Creating a User
	Creating a Table
	Adding a Record

	Appendix D: Configuring PHP
	How to Configure PHP
	Setting PHP options
	Some Useful Configuration Options
	PHP Execution
	SMTP Server
	File Uploads
	Legacy Settings
	Sessions
	Error Reporting

	Sample Configuration Settings
	.htaccess
	config.php

	Appendix E: PDO
	PDO Objects
	PDO Object
	PDOStatement Object
	For a prepared statement:
	For a result set:

	Working With PDO
	Establishing a Connection
	Other Databases

	Prepared Statements and SQL Injection
	The Risk: SQL Injection
	Prepared Statements
	Repeated Execution

	Unprepared (Direct) SQL Statements
	SELECT Statements
	INSERT, UPDATE, and DELETE Statements.

	PDO Techniques
	SELECT Data
	Fetching Data
	The Result Set
	Fetching the Whole Result Set
	Fetching a Single Column

	Simple PDO Recipes
	Count Records
	Count All Records
	Count Selected Records (Prepared)

	Login Script

	Summary of PDO
	Connection
	Executing Simple Statements
	INSERT, UPDATE & DELETE

	Executing Prepared Statements
	Reading Data
	Reading a Single Row
	Reading Multiple Rows
	Reading a Single Column

	Getting the Last Auto-Incremented Key
	PDO->lastInsertId()

	Error Reporting

	Summary of Process

	Appendix F: Code Snippets
	The Snippets Table
	The Page
	Connecting to the Database
	Adding a Record
	Populating the List
	Displaying an Existing Snippet
	Displaying the Content on the Form
	The Submit Buttons
	Updating Records
	Deleting Records
	Finishing Off

